Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

H. S. Yathirajan, ${ }^{\text {a }}$ B. K. Sarojini, ${ }^{\text {b }}$

B. Narayana, ${ }^{\text {c }}$ S. Bindya ${ }^{\text {d }}$ and Michael Bolte ${ }^{\mathbf{e}_{*}}$
${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\mathbf{b}}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, 'Department of Chemistry, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Chemistry, Sri Jayachamarajendra College of Engineering, Manasagangotri, Mysore 570 006, India, and ${ }^{\mathbf{e}}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Max-von-Laue-Str.7, 60438 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.067$
$w R$ factor $=0.181$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

(2E)-1-(3-Bromo-2-thienyl)-3-(2,5-dimethoxy-phenyl)prop-2-en-1-one

The molecules of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}$, are almost planar and do not show unusual geometric parameters. The crystal packing is characterized by short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

Chalcones and their heterocyclic analogues show numerous biological effects (Opletalova \& Sedivy, 1999; Dimmock et al., 1999). In addition, with appropriate subsitutuents, chalcones are a class of non-linear optical (NLO) materials (Fichou et al., 1988; Butcher et al., 2006; Harrison et al., 2006).

(I)

The crystal structures of 3-hydroxy-1,3-bis(2-thienyl)prop-2-en-1-one (Baxter et al., 1990) and 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one (Ng et al., 2006) have been reported. In continuation of our work on the crystal structures of chalcones (Yathirajan et al., 2006a,b), the present paper reports the crystal structure of the title compound, (I), (Fig. 1).

The bond lengths and angles in (I) can be regarded as normal (Cambridge Structural Database, Version 5.27; Allen, 2002) and all the non-H atoms are close to coplanar (r.m.s. deviation $=0.130 \AA$). The molecular structure and the crystal packing of (I) are characterized by short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 1).

Experimental

2-Acetyl-3-bromothiophene ($10 \mathrm{~g}, 0.048 \mathrm{~mol}$) in methanol (50 ml) was mixed with 2,5 -dimethoxybenzaldehyde ($8 \mathrm{~g}, 0.048 \mathrm{~mol}$) and the mixture was treated with 10 ml of 30% potassium hydroxide solution at 278 K . The reaction mixture was then brought to room temperature and stirred for 4 h . The precipitated solid was filtered and washed with water, dried and recrystallized from acetone to yield crystals of (I) (yield: 83\%; m.p.: 375-377 K). Analysis for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}$: found (calculated); C: 50.93 (51.00\%); H: 3.63 (3.71\%).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}$
$M_{r}=353.22$
Monoclinic, $P 2_{\mathrm{b}}$
$a=5.2240(5) \AA$
$b=9.3265(14) \AA$
$c=14.8968(16) \AA$
$\beta=95.622(9)^{\circ} \AA^{\circ} \AA^{3}$
$V=722.31(15) \AA^{3}$

Received 21 August 2006 Accepted 21 August 2006

Data collection

STOE IPDS II two-circle
\quad diffractometer
ω scans
Absorption correction: multi-scan
\quad MULABS (Spek, 2003; Blessing,
1995)
$T_{\min }=0.362, T_{\max }=0.398$

4264 measured reflections 2604 independent reflections 2465 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.1^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1481 P)^{2}\right. \\
& +0.1692 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.14 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-1.75 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 926 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.025 \text { (18) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C4-H4 \cdots O5 $^{\text {i }}$	0.95	2.37	$3.296(8)$	164
C17-H17B \cdots O5 $^{\text {ii }}$	0.98	2.41	$3.331(9)$	157
C7-H7 ${ }^{\text {O5 }}$	0.95	2.47	$2.798(8)$	100
C7-H7 O17	0.95	2.41	$2.763(8)$	102

Symmetry codes: (i) $-x+3, y+\frac{1}{2},-z+2$; (ii) $-x+1, y-\frac{1}{2},-z+2$.
The H atoms were found in a difference map and then placed in idealized positions ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The methyl groups were allowed to rotate but not to tip to best fit the electron density. The highest peak in the final difference map is located $0.79 \AA$ from atom Br 1 and the deepest hole $0.82 \AA$ from Br 1 .

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

One of the authors (BKS) thanks AICTE, Govt. of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.

Figure 1
View of (I) showing 50\% displacement ellipsoids (arbitrary spheres for the H atoms).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baxter, L. A. M., Blake, A. J., Heath, G. A. \& Stephenson, T. A. (1990). Acta Cryst. C46, 508-510.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. \& Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.

Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Indira, J. (2006). Acta Cryst. E62, o1647-o1649.

Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, 03200-o3202.
Opletalova, V. \& Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006a). Acta Cryst. E62, o3629-o3630.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006b). Acta Cryst. E62, o3631-o3632.

